

Notes and Observations from RAID 2005

NEbraskaCERT CSF

September 21, 2005

Stephen M. Nugen, CISSP Senior Research Fellow Nebraska University Consortium for Information Assurance College of IS&T, Peter Kiewit Institute University of Nebraska, Omaha

Slide 1

Overview

- Selected observations from RAID 2005 Conference
 - No claims of completeness, accuracy, or fairness
 - Hope is that some of these topics will provoke your own ideas and contributions
- Presentation relies on preliminary proceedings, subjective memories, and handwritten notes
 All the good stuff is credited to the Conference
 - authors and presenters
 - All errors are Nugen's fault

RAID 2005 Conference

- RAID 2005: Eighth International Symposium on Recent Advances in Intrusion Detection
 - Sept 6 9, 2005; Seattle Washington
 - http://www.conjungi.com/RAID
 - Official Conference Proceedings will be published by Springer
- Context
 - Yearly since 1998
 - Location alternates between North America and Europe

RAID 2005 Conference cont'd

- Context cont'd
 - -~130 attendees in 2005
 - Academia, National Labs, Industry (providers and enterprises)
 - Program Selections
 - 25-member program selection committee
 - Single session for all papers
 - Accepted 17 papers from 83 submissions
 - 30-min presentations
 - Posters (first time)
 - Accepted 13 posters from 15 submissions
 - -5-min presentation to introduce topic

- Speaker: Phil Attfield
 - Formerly Boeing; now Northwest Security Institute
 - Key witness for government prosecution of "Flyhook" case, US vs. Gorshkov (and others) in 1999
- Multiple ISPs and organizations compromised, then contacted by consultants offering information security services
 - Declining the service led to more intrusions
 - At least one ISP agreed to consulting terms

- Two attackers persuaded to visit fictitious US company for job interview
 - Job interview included demonstrating hacking skills using FBI-supplied computers with keyloggers
- Information from keyloggers used to interrogate attacker's servers in Russia, finding:
 - 56,000 credit card numbers
 - Hacked passwords
 - Victim network topologies
 - Previously unknown victims, including PayPal, eBay, and Verio

- Discovered tools included
 - Virtual browser with free email (using other services like hotmail and yahoo for backend... through a TCP relay)
 - Special "front end" to eBay and PayPal services
 - Spoofed sellers, bidders, and raters (all of them satisfied customers)... attracting real bidders with real funds
 - Developing new tools to exploit race conditions

• Outcomes

- US Court convicted two Russian hackers
- Russian court convicted FBI agent, in abstentia

- Key point, repeatedly reiterated, several times...
 Information Security ≠ Business Security
 - The most damaging compromises were not computer intrusions that would be detected by IDS
 - Attacks not aimed at the operating system or software, but rather at information processes and data exchanges
 - Initial processes and data exchanges for online business like eBay and PayPal developed very rapidly, with less rigor and maturity than normal for financial institutions

- Speaker's challenge
 - Incorporate more business logic into intrusion systems and processes
 - Take lessons from fraud detection
 - Define normal behavior and identify deviations from normal
 - Distinguish between
 - Actual (human) users
 - Synthetic users (agents)
 - Speaker: All, or nearly all, synthetic users are hostile
 - Timing patterns insufficient discriminator in some cases (e.g., web browser with autocomplete)

Intrusion Detection Context

• Acronyms

- -ID = Intrusion Detection
- IDS = Intrusion Detection System
- NIDS = Network-based IDS (passive)
- HIDS = Host-based IDS
- IPS = Intrusion Prevention System (inline)

Four states

- True negative: No intrusion, no detection
- True positive: Actual intrusion, detected
- False negative: Actual intrusion, not detected
- False positive: No intrusion, but detected as one

Intrusion Detection Context cont'd

- Signature-based IDS
 - Detect intrusion by comparing observed behavior to patterns of known misuse (signatures)
 - No match => no intrusion
 - Match => intrusion
 - Common use
 - Few false positives
 - More false negatives
 - Corresponds to security policy: Permit everything not expressly prohibited

Intrusion Detection Context cont'd

- Anomaly-based IDS
 - Detect intrusion by comparing observed behavior to patterns of known normal use
 - No match => Intrusion
 - Match => No intrusion
 - Uncommon in use; common in research
 - More false positives
 - Fewer false negatives
 - Corresponds to security policy: Deny everything not expressly permitted

• Reference

- Cynthia Wong, Stan Bielski, Ahren Studer, and Chenxi Wang
- Empirical Analysis or Rate Limiting Mechanisms
- In Recent Advances In Intrusion Detection (RAID) 2005, September 2005
- All authors from Carnegie Mellon University; supported by National Science Foundation

- Motivation: Constrain the harmful effects of worm propagation
 - Spreading the infection to new hosts
 - Collateral impact of worm-generated network traffic impacting non-infected host communications
- Goal: Interfere with worms' network traffic without preventing legitimate traffic
 - Requires detecting worms based on their behavior
 - False positives limit or prevent legitimate traffic
 - False negatives permit worm propagation

- Evaluation context
 - Authors evaluated methods developed by others and themselves
 - Used actual traffic traces collected from academic network border
 - 1200 externally routed hosts with multiple operating systems
 - Traffic traces included Blaster and Welchi worms
 - Infected 100 hosts
 - Increased outbound traffic volume from 500K to 11,000K flows/day

- Williamson's IP Throttling Scheme
 - Method
 - Normal applications typically exhibit a stable contact rate to limited number of external hosts
 - Create a "working set" of IP addresses
 - Connection requests to destinations in working set permitted without delay
 - Connection requests to destinations not in working set are routed to FIFO delay queue
 - When queue is full, new requests are dropped
 - Requests in delay queue satisfied at preset rate

- Williamson's IP Throttling Scheme cont'd
 - Performance parameters
 - Size of working set (e.g., 5 entries)
 - Size of delay queue (e.g., 100 entries)
 - Rate at which requests in delay queue are satisfied (granted and removed from queue) (e.g., 1/sec)
 - Findings
 - Varying the working set size from 4..10 entries had measurable, but not significant impact
 - Port scans cause delay queue to overflow
 - Works better when implemented at the host, rather than at edge router

Slide 18

Williamson's IP Throttling Scheme cont'd

- Findings cont'd

- Normal host, 3-hour period
 - Most packets not delayed
 - False positive rate: 18%

Delay Amt	Benign Flows			
(seconds)	#	%		
No delay	1,759	82%		
1 - 10	385	18%		
11 - 20	0	0%		
Totals	2,144	100%		

- Packets sent to delay queue delayed ~3 seconds
- Infected host, 3-hour period
 - 91% of worm
 traffic dropped
 97% of legit
 traffic dropped
 - Net benefit...

Delay Amt	Benign I	Flows	Malicious Flows		
(seconds)	#	%	#	%	
No delay	1	1%	12	0%	
1 - 30	1	1%	36	0%	
31 - 60	1	1%	36	0%	
61 - 90	1	1%	50	0%	
91 - 100	0	0%	10,115	9%	
Dropped	141	97%	107,080	91%	
Totals	145	100%	117,329	100%	

- Chen's Failed Connection Rate Limiting (FC)
 - Method
 - Infected hosts generate large number of failed TCP requests
 - Edge router stores failure statistics for each host
 - Failed request iff destination responds with TCP RST
 » Flawed assumption that understates # of failed connections

- Chen's FC Rate Limiting
 - Method cont'd
 - Basic rate limiting
 - Define short-term failure rate (SFR)
 - When # of failed connections exceeds SFR, further connections are limited using leaky bucket token algorithm
 - » Every failed connection removes token from bucket
 - » When the bucket is empty, connection requests are dropped
 - » Every SFR seconds, one token is added to bucket

- Chen's FC Rate Limiting cont'd
 - Method cont'd
 - Temporal rate limiting
 - Like basic, but adds a daily failure rate (DFR, e.g. 300/day) to contain less aggressive worms

– Findings

- Worms quickly deplete available tokens with the result that worm propagation is severely constrained
- Some bursty applications falsely detected as worms, constraining their legitimate traffic
 - Ex: Peer-to-peer sharing, HTTP clients
- Expanding definition of failed request to include TCP Timeouts reduced number of false negatives

- Schechter's Credit-based Rate Limiting (CB)
 - Method
 - Rate limits just <u>first-contact</u> connections (Outgoing requests to destinations not previously contacted)
 - Stores statistics about failures and successes
 - CB limiting
 - Preset # of credits allocated to each host
 - Every first-contact failed connection removes one credit
 - Every first-contact successful connection adds one credit

- Schechter's Credit-based Rate Limiting (CB)
 - Method cont'd
 - CB limiting cont'd
 - When there are no credits, first-contact requests are dropped
 - » No effect on traffic to destinations previously visited
 - » Presented paper did not address how a credit balance of zero is ever changed to non-zero

- Schechter's Credit-based Rate Limiting (CB)
 - Findings
 - Fewer false positives than Chen's FC Rate Limiting for bursty applications
 - Host implementation
 - Average false positives: 8%
 - Average false negatives: 5%

- DNS-Based Rate Limiting
 - Developed by authors using Ganger's observation
 - Worms induce different DNS statistics than legitimate applications... they make connect requests without first making a DNS request
 - Method
 - Connection requests to destinations with previous DNS translation is permitted without delay
 - Connection requests to untranslated destinations are delayed by Cascading Bucket Scheme

- DNS-Based Rate Limiting cont'd
 - Method cont'd
 - Cascading Bucket Scheme (vastly oversimplified)
 - Non-translated requests are inserted into logical buckets
 - Each bucket contains a fixed number of entries
 - Buckets cascade into each other
 - Buckets are emptied at preset rate
 - When buckets are full, new requests are dropped

- DNS-Based Rate Limiting cont'd
 - Findings (compare to Williamson's IP Throttle)
 - Normal host, 3-hour period

IP Throttled

Delay Amt	Benign Flows			
(seconds)	#	%		
No delay	1,759	82%		
1 - 10	385	18%		
11 - 20	0	0%		
Totals	2,144	100%		

DNS Rate Limited

Delay Amt	Benign Flows			
(seconds)	#	%		
No delay	2,136	100%		
1 - 10	8	0%		
>10	0	0%		
Totals	2,144	100%		

DNS-Based Rate Limiting cont'd

- Findings cont'd

Infected host, 3-hour period

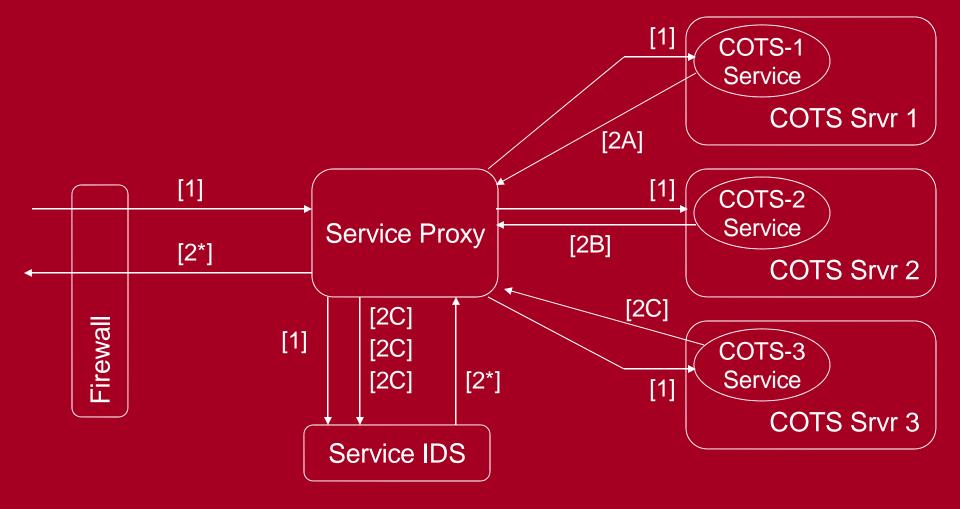
IP Throttled

DNS Rate Limited

Delay Amt	Benign Flows		Malicious Flows		Delay Amt	Benign Flows		Malicious Flows	
(seconds)	#	%	#	%	(seconds)	#	%	#	%
No delay	1	1%	12	0%	No delay	806	80%	1	0%
1 - 30	1	1%	36	0%	1 - 30	4	0%	34	0%
31 - 60	1	1%	36	0%	31 - 60	2	0%	35	0%
61 - 90	1	1%	50	0%	61 - 100	12	1%	<mark>4</mark> 0	0%
91 - 100	0	0%	10,115	9%	> 100	11	1%	4,903	4%
Dropped	141	97%	107,080	91%	Dropped	172	17%	112,862	96%
Totals	145	100%	117,329	100%	Totals	1,007	100%	117,875	100%

- Reference
 - Eric Totel, Frédéric Majorczyk, Ludovic Mé
 - COTS Diversity Based Intrusion Detection and Application to Web Servers
 - In Recent Advances In Intrusion Detection (RAID) 2005, September 2005
 - All authors from Supélec, Cesson-Sévigné Cedex, France, partly supported by Conseil Régional de Bretagne, part of French Ministry of Research DADDi project

COTS Diversity Intrusion Detect cont'd



- Approach
 - Detect anomalous behavior based on design diversity
 - Consider different COTS programs
 - Implemented to a common spec (e.g. Web Server)
 - Provided with common inputs
 - Any differences in resulting output must be due to
 - (1) Design and implementation differences; or
 - (2) One of the programs being compromised
 - If we can distinguish between these two causes, we can detect <u>actual</u> intrusions (most IDS detect <u>potential</u> intrusions)

COTS Diversity Intrusion Detect cont'd

• Simplified Architecture

COTS Diversity Intrusion Detect cont'd

- Service IDS compares outputs of all servers
 - Differences classified
 - Due to design/implementation differences not associated with vulnerability: False Positive, so no alert
 - Due to compromise: True Positive, Alert
 - Voting used to select highest-confidence value to return to client
- Findings
 - 36 rules sufficient to mask legitimate design differences... difficult to create and maintain
 - Low overhead, few false positives

Behavioral Distance for Intrusion Detect

• Reference

- Debin Gao, Michael Reiter, and Dawn Song
- Behavioral Distance for Intrusion Detection
- In Recent Advances In Intrusion Detection (RAID) 2005, September 2005
- All authors from Carnegie Mellon University

• Approach

- Define Behavioral Distance as the extent to which different processes (potentially running different programs on different operating systems) behave similarly in response to common input
 - Inspired by Evolutionary Distance, a method used in biology to align different DNA sequences that arise from common ancestor, but have changed

The more similar the processes (replicas)

- The easier it is to compare them
- The less value there is in comparing them since they are more likely to be compromised at the same time

- Approach cont'd
 - Sensed behavior: How the process interacts with the operating system... sequences of system calls
 - Different than previous method which sensed external outputs
 - Some options illustrated
 - Compare Apache to IIS on Windows O/S
 - Compare Apache on Windows to Apache on Linux
 - This is the option chosen by the authors... comparing the Apache system call sequence on Linux to the Apache system call sequence on Windows... very different system calls

- Approach cont'd
 - Observed sequences of system calls organized into phrases (subsequences)
 - This reduces the need to consider the arguments to the system calls
 - Equivalence learned through clean training data...
 - Minimizing the behavioral distance between two functionally equivalent sequences
 - Learning stops when stored table of behavioral distances stable
 - In operation, if the behavioral distance between two replicas > threshold, detect as intrusion

• Findings

- Evaluated six replicas
 - Three different web servers (Apache, Myserver, and Abyss)
 - Executing on two operating systems (Linux and Windows)
- After training
 - Nominal requests and responses exhibit very small behavioral distances
 - Intrusions detected, even those that emulated mimicry attacks
 - Throughput overhead measured at ~7%
 - Latency overhead measured at ~6%

• Reference

- H. Bos and Kaiming Huang
- Towards Software-Based Signature Detection for Intrusion Prevention on the Network Card
- In Recent Advances In Intrusion Detection (RAID) 2005, September 2005
- Bos is from Vrije Universiteit, Amsterdam, The Netherlands
- Huang is from Xiamen University, Xiamen, China

Motivation

- Move IDS closer to the host
- NIC cards more capable than hosts for high data rates
 - 69Mbps overwhelms signature-based IDS on host with 1.8GHz P4
- NIC card harder to subvert
- Approach: Signatures implemented in deterministic finite automatons
- Note: Purdue Grad Student porting Snort to NIC card, independent of this effort

Others

Slide 40

- Virtual playground to study worm propagation
 - Hosts, routers, switches
 - Demonstrated creating 41-host network in < 2 min implemented on single workstation
 - Reported ability to create 2000-3000 virtual nodes with 10 workstations
- Multiple schemes to detect executable code in network payloads...

Visualizations to detect port scans

CSF 20050921

Others cont'd

- Detection scheme monitoring for dynamically created executable code in user space found two such cases
 - Windows... until it is activated

– Java and JVM

Special multi-agency focus on SCADA systems

Higher-level reasoning systems

Others cont'd

- Detecting link-layer MAC spoofing in wireless networks
 - Some attacks work at link layer, not detected by IP-based IDS
- Handling very large volumes of sensor data (200M records/day)

Questions, Contributions?

- Presenter contact info
 - Steve Nugen
 - smnugen@nugensoft.com
 - smnugen@nucia.unomaha.edu
 - 402.554.3007

