QUANTUM COMPUTING & CRYPTO: HYPE VS. REALITY

ABHISHEK PARAKH
UNIVERSITY OF NEBRASKA AT OMAHA
QUANTUM COMPUTING: I CAN SUM IT UP IN ONE SLIDE

Pure Magic!
SERIOUSLY: HOW DOES IT WORK?

- That’s simple: Even Justin Trudeau knows it!
- It works by harnessing the quantum phenomenon where
 - Particles can be in multiple states at the same time
 - Multiple places at the same time
 - “Looking” at (reading the state) will change the state
 - Nothing is really under control – including the states and read-outs
 - No one knows if a quantum algorithm when run will give the correct output (probabilistic)
 - But it works
LET’S TRY THIS AGAIN: HOW DOES IT WORK?

Honestly, no one really “understands” QM!
HOW CAN SCIENTISTS ACCEPT SUCH A THING?

• That’s the toughest part – most engineers/scientists cannot accept not understanding the underlying systems that they are working with
 • So most don’t care for quantum computing and that’s perfectly fine!

• The smart ones, however, avoid asking the tough questions
 • It is how it is – tell me how can I make money off of this!
LET’S GET TO IT THEN

- Quantum computing: analogue computing based on principles of quantum mechanics

- Quantum cryptography: uses photons as quantum particles to achieve secure key distribution over insecure public channels

- Contrary to common thinking, these are completely different from each other
 - Hardly anything common between them in terms of implementation/technology used
 - Quantum computing is in its early stages
 - Quantum cryptography is mature enough - buy off-the-shelf
QUANTUM COMPUTING NEWS IN LAST WEEK

• China’s new quantum computing device built inside a diamond
 • Factor 35 into 5 and 7
• Computerworld: It’s time to decide how quantum computing will help your business
 • Planning must start right now: 5-10 years away
• Phys.org: New materials bring quantum computing closer to reality
• Trendintech.com: Quantum computers sound great but who will program them
• Singularityhub.com: Quantum computing demands a whole new kind of programmer
• Wired.com: The bizarre quantum test that could keep your data secure
• Trendintech.com: Europe takes quantum computing to the next level with this billion euro project
Let’s First Talk About Quantum Computing

- Quantum mechanics was born in early 20th century
 - An attempt to make sense of experimental observations
 - Most famous is the Young’s double slit experiment – one particle appears to be in multiple places at the same time
 - Einstein famously disliked quantum mechanics
 - In an attempt to prove it wrong, he published the famous paper on EPR pairs
 - Also known as Entangled particles
 - Two particles separated by infinite amount of distance can be entangled – a interaction with one will instantaneously change the other
 - Goes against theory of relativity: nothing can travel faster than speed of light
- Max Born, Heisenberg, Pauli: coined the term quantum mechanics circa 1924
- Schrödinger, Dirac, etc.
- Quantum computing: The idea mainly originated in 1980s paper by Feynman
TIMELINE (INTERSPERSED WITH CRYPTO)

- Quantum cryptography arguably started around 1970s
- 1970: Stephen Wiesner tried to publish a paper on unclonable electronic money
- 1973: Bennett provided a model for reversible Turing machine
- 1980-82: Paul Benioff developed the quantum Turing machine that does not dissipate any energy
- 1982: Feynman said we should build a quantum computer
- 1982: No-cloning theorem introduced
- 1984: Bennett and Brassard developed the first quantum cryptography protocol that provides unconditional security
- 1985: Deutsch gave a model for universal quantum computer
TIMELINE CONTINUED

- 1993: Quantum teleportation introduced
- 1992 (Bang!): Deutsch introduced the first quantum algorithm that is faster than classical algorithms
- 1994: Shor introduced a factoring algorithm that would destroy modern public-key cryptography
- 1995: Shor developed a 9-qubit quantum error correcting code
- 1996: Quantum search algorithm by Grover
- New decision algorithms and Quantum Artificial Intelligence
- Immense progress in the area of quantum information theory
QUANTUM COMPUTING: WHAT MADE IF FAMOUS

• Factorization in log n steps rather than $n^{1/2}$ steps [Shor]

• Database search in $n^{1/2}$ rather than n steps [Grover]
QUANTUM PRIMITIVES

• Superposition
• Collapse upon measurement
• Deterministic evolution (*Schrödinger equation*)
• No cloning of an unknown state
• Counter-intuitive behavior of objects
• New quantum information science
WHAT MAKES QUANTUM COMPUTERS SO POWERFUL: QUANTUM REGISTER IN SUPERPOSITION

Each cell has a qubit. Number of states is 2^n
DEUTSCH’S ALGORITHM
GROVER’S SEARCH ALGORITHM: UNSORTED DATABASE
IBM QUANTUM COMPUTER: A 5-QUBIT COMPUTER

Quantum on IBM Cloud

Since its launch less than a year ago, about 40,000 users have run over 275,000 experiments on the IBM Quantum Experience. IBM recently released a new application programming interface (API) for the IBM Quantum Experience that enables developers and programmers to build interfaces between its existing five qubit, IBM Cloud-based quantum computer and classical computers – no background in quantum physics required.

Get started Watch introduction (01:34)
BREAKING NEWS: THIS MORNING
IS THIS MOORE’S LAW IN EXPONENTIAL FORM?

IBM makes leap in quantum computing power

There's now a 16-bit quantum computer on the IBM Cloud platform for businesses to experiment with

By Peter Sayer
Paris Bureau Chief, IDG News Service | MAY 17, 2017
OTHER COMPANIES

• Google’s quantum computer: https://www.technologyreview.com/s/544421/googles-quantum-dream-machine/

 – Google’s project estimates that Martinis’s group can make a quantum annealer with 100 qubits as soon as 2017 – haven’t heard anything yet

• https://en.wikipedia.org/wiki/List_of_Companies_involved_in_Quantum_Computing_or_Communication
DWAVE: WHAT APPLICATIONS IS IT CURRENTLY BEING USED FOR?

- Good to break widely used crypto (potentially)
- Modeling quantum mechanical processes: behavior of atoms/particles
- Optimization problems (D-Wave)
- Radiotherapy optimization
- Protein Folding
- Water Network Optimization
- Machine learning
- Object Detection
- Labeling News Stories
- Video Compression
- Monte-Carlo Simulation
QUANTUM COMPUTING IMPACT ON CRYPTOGRAPHY

<table>
<thead>
<tr>
<th>Cryptographic Algorithm</th>
<th>Type</th>
<th>Purpose</th>
<th>Impact from large-scale quantum computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES-256</td>
<td>Symmetric key</td>
<td>Encryption</td>
<td>Larger key sizes needed</td>
</tr>
<tr>
<td>SHA-256, SHA-3</td>
<td></td>
<td>Hash functions</td>
<td>Larger output needed</td>
</tr>
<tr>
<td>RSA</td>
<td>Public key</td>
<td>Signatures, key establishment</td>
<td>No longer secure</td>
</tr>
<tr>
<td>ECDSA, ECDH (Elliptic Curve Cryptography)</td>
<td>Public key</td>
<td>Signatures, key exchange</td>
<td>No longer secure</td>
</tr>
<tr>
<td>DSA (Finite Field Cryptography)</td>
<td>Public key</td>
<td>Signatures, key exchange</td>
<td>No longer secure</td>
</tr>
</tbody>
</table>

NIST Timeline:
- Fall 2016 – formal Call for Proposals
- Nov 2017 – Deadline for submissions
- 3-5 years – Analysis Phase
- 2 years later – Draft standards ready
CRYPTOGRAPHY IN A QUANTUM WORLD

• Quantum Cryptography – we’ll discuss this next

• Classical Cryptography believed to be resistant to Quantum Attacks
 • Lattice-based crypto
 • Multivariate polynomials based crypto
 • Hash-based crypto
 • Error-correction code based crypto
 • Supersingular elliptic curve isogeny crypto
 • Several other candidates...
WHICH ONE SHOULD WE ADOPT?

• NIST is playing it safe
 • There are already classical systems deployed and hence does not want to take the leap to quantum crypto
 • New classical algorithm don’t have security proofs either
 • There may be another quantum computing algorithm discovered tomorrow that may break them
 • For us unfortunately – it is what it is

• Once there are quantum computers, it is natural to phase out classical cryptographic algorithms
 • Maybe this will become a fall back
QUANTUM COMPUTING: AT PRESENT NO ONE KNOWS HOW POWERFUL THEY ARE
QUANTUM CRYPTOGRAPHY

- Replace public key encryption systems
 - Therefore provides a way to exchange encryption keys
QUANTUM CRYPTOGRAPHY: OTHER APPLICATIONS

- Quantum random number generator
- Quantum secret sharing: key management
- Semi quantum communication: one side quantum other classical
- Quantum teleportation
- Secure direct communication
- Position based quantum cryptography
- Superdense coding
THERE IS A LOT THAT QUANTUM CRYPTO CANNOT DO

• What it does, it does with perfect secrecy but there is a lot that it cannot do
• Bit commitment protocols (online gambling)
• Secure multiparty computations
 • No homomorphic encryption
• Cannot work over large distances
• Does not solve the authentication problem
PHYSICAL IMPLEMENTATIONS

• Difficult to manufacture single photon emitters and detectors
 • As a result, several implementation based attacks exist on QKD systems

• Number of newer protocols fix these issues:
 • Decoy state protocol
 • Device-independent cryptography
QUANTUM PROGRAMMING LANGUAGES

- Race to be The programming language for quantum computers
- Wikipedia has a reasonably good article
- Quantiki.org is a quantum Wikipedia and has great amounts of detail
QUASIM: A QUANTUM GAME BEING BUILT AT UNO: NSF FUNDED
THANK YOU!

- **Words of Great Charles Bennett – A Founder of quantum information theory:**
 https://www.youtube.com/watch?v=9q-qoeqVVD0

- **Talk** to your kids about quantum theory before it’s too late:
 https://imgur.com/gallery/Ftilh